FIVE-DAY BIOCHEMICAL 7.2 OXYGEN DEMAND The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determining how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. Oxygen demand is a measure of the amount of oxidizable substances in a water sample that can lower DO concentrations (Nemerow, 1974; Tchobanoglous and Schroeder, 1985). The test for biochemical oxygen demand (BOD) is a bioassay procedure that measures the oxygen consumed by bacteria from the decomposition of organic matter (Sawyer and McCarty, 1978). The change in DO concentration is measured over a given period of time in water samples at a specified temperature. Procedures used to determine DO concentration are described in NFM 6.2. It is important to be familiar with the correct procedures for Biochemical oxygen demand represents the amount of oxygen consumed by bacteria and other microorganisms while they decompose organic matter under aerobic conditions at a specified temperature. determining DO concentrations before making BOD measurements. BOD is measured in a laboratory environment, generally at a local or USGS District laboratory. Accurate measurement of BOD requires an accurate determination of DO. . There are two stages of decomposition in the BOD test: a carbonaceous stage and a nitrogenous stage (fig. 7.2-1). - ► The carbonaceous stage, or first stage, represents that portion of oxygen demand involved in the conversion of organic carbon to carbon dioxide. - ▶ The nitrogenous stage, or second stage, represents a combined carbonaceous plus nitrogeneous demand, when organic nitrogen, ammonia, and nitrite are converted to nitrate. Nitrogenous oxygen demand generally begins after about 6 days. For some sewage, especially discharge from wastewater treatment plants utilizing biological treatment processes, nitrification can occur in less than 5 days if ammonia, nitrite, and nitrifying bacteria are present. In this case, a chemical compound that prevents nitrification should be added to the sample if the intent is to measure only the carbonaceous demand. The results are reported as carbonaceous BOD (CBOD), or as CBOD₅ when a nitrification inhibitor is used. **Figure 7.2-1.** Biochemical oxygen demand curves: (*A*) typical carbonaceous-demand curve showing the oxidation of organic matter, and (*B*) typical carbonaceous- plus nitrogeneous-demand curve showing the oxidation of ammonia and nitrite. (Modified from Sawyer and McCarty, 1978.) + + The standard oxidation (or incubation) test period for BOD is 5 days at 20 degrees Celsius (BOD₅). The BOD₅ value has been used and reported for many applications, most commonly to indicate the effects of sewage and other organic wastes on dissolved oxygen in surface waters (see TECHNICAL NOTE). The 5-day value, however, represents only a portion of the total biochemical oxygen demand. Twenty days is considered, by convention, adequate time for a complete biochemical oxidation of organic matter in a water sample, but a 20-day test often is impractical when data are needed to address an immediate concern. - The BOD₅ and CBOD₅ tests have limited value by themselves in the assessment of stream pollution and do not provide all of the relevant information to satisfy every study objective (Nemerow, 1974; Stamer and others, 1983; Veltz, 1984). Additional analyses of water samples for chemical oxygen demand, fecal bacteria, and nutrients can aid in the interpretation of BOD₅. - An ultimate carbonaceous BOD (CBOD₁₁) test is needed to obtain additional BOD information, and can be used for modeling DO regimes in rivers and estuaries (Hines and others, 1978; Stamer and others, 1983). Guidelines for the CBOD₁₁ determination are described in Stamer and others (1979, 1983). - Note that BOD results represent approximate stream oxygen demands because the laboratory environment does not reproduce ambient stream conditions such as temperature, sunlight, biological populations, and water movement. TECHNICAL NOTE: A 5-day duration for BOD determination has no theoretical grounding but is based on historical convention. Tchobanoglous and Schroeder (1985) provide the following background: "In a report prepared by the Royal Commission on Sewage Disposal in the United Kingdom at the beginning of the century, it was recommended that a 5-day, 18.3°C, BOD value be used as a reference in Great Britain. These values were selected because British rivers do not have a flow time to the open sea greater than 5 days and average long-term summer temperatures do not exceed 18.3°C. The temperature has been rounded upward to 20°C, but the 5-day time period has become the universal scientific and legal reference."